
Page 0 of 76

Table of Contents

1 INTRODUCTION... 2

1.1 System Overview ... 2

1.2 Organization of the Manual ... 2

1.3 Definition ... 2

1.4 References .. 3

2 GETTING STARTED .. 4

2.1 Using Code Generators... 4

2.1.1 EPICS Code Generator ... 4

2.1.2 CODAC Code Generator .. 4

2.2 Directory Structure of an NDS Device-specific Driver ... 5

2.3 Minimal Driver.. 6

2.4 Building an EPICS Application ... 7

3 NDS TRACING SYSTEM ... 8

3.1 Managing Trace Level .. 8

4 DEVICE STRUCTURE ... 9

4.1 Device Class ... 9

4.1.1 ChannelGroup Iteration .. 9

4.1.2 Finding Channels .. 9

4.2 ChannelGroup ... 10

4.2.1 Iteration of Channels ... 10

4.3 Channel .. 11

4.3.1 Accessing a Device from a Channel ... 11

5 LIFECYCLE OF A DEVICE DRIVER ... 12

6 NDS::DEVICE::CREATESTRUCTURE .. 15

6.1 Accessing Initialization Parameters .. 15

7 DEFINING CHANNELS ... 16

7.1 Manual Channel Creation and Registration .. 17

7.2 Automatic Channel Object Creation and Registration ... 17

8 EPICS RECORDS’ HANDLING .. 19

8.1 Synchronous EPICS Record Handling ... 20

8.2 Getters’ Call on Initialization .. 21

8.3 Overriding a Standard Function ... 21

8.3.1 Example: Reading Value from Channel ... 22

8.4 Asynchronous EPICS Record Handling ... 22

8.5 Using Asynchronous Update .. 22

8.6 Asyn Reason Arguments .. 23

8.7 Records Timestamping ... 24

Page 1 of 76

8.7.1 Synchronous Timestamp Update .. 24

8.7.2 Asynchronous Timestamp Update .. 25

8.8 Read Back Value ... 26

8.9 Get asynAddr from get/set Function ... 27

9 STATE MACHINES .. 28

9.1 Enable Objects .. 30

9.2 Device’s State Machine ... 31

9.2.1 Fast init.. 31

9.3 ChannelGroup and Channel State Machine Implementation 34

9.4 How to Block Undesired Transitions .. 34

9.5 Reset Operation ... 35

9.5.1 Switching from the RESETTING State .. 35

10 MESSAGING MECHANISM ... 36

10.1 Handling Messages.. 36

10.2 Standard Message Types .. 36

10.3 CSS Messaging Support ... 37

11 LOADING FPGA CODE ... 38

11.1 NDS v2.0 Implementation .. 38

11.2 NDS v2.1 Implementation .. 38

12 TIME EVENTS ... 40

13 NDS TOOLS .. 42

13.1 epicsMutex and AsynDriver Locker ... 42

14 NDS TASKS .. 43

14.1 nds::TaskService ... 43

14.2 nds::ThreadTask Class ... 44

14.3 nds::PeriodicTask Class ... 45

14.4 nds::PollingTask Class ... 45

14.4.1 nds::PollingTask Example .. 46

14.5 nds::Timer Class ... 48

15 DEFINE DRIVER SPECIFIC IOC FUNCTION .. 50

16 SOFTWARE USER MANUAL REVIEW CHECKLIST .. 51

Page 2 of 76

1 INTRODUCTION

This Developer’s Manual provides the information necessary for a developer to

effectively implement an EPICS device support with usage of NDS.

1.1 System Overview

The rationale behind having a common interface is that a large class of devices offers

similar capabilities. If each such device were to have a different interface, engineers

using them would need to be familiar with each device specifically, requiring more

time for familiarization, inhibiting transfer of knowledge from working with one

device to another and increasing the chance of engineering errors due to a

misunderstanding or incorrect assumptions.

The NDS library is also provided with online documentation. To access it on CODAC

systems, make sure that the codac-core-X.Y-epics-nds-doc RPM is installed

where X.Y is the CODAC version. The documentation is then available at location:

file:///opt/codac/epics/modules/nds/doc/index.html

1.2 Organization of the Manual

This manual covers the following topics:

■ Getting Started

■ NDS Tracing System

■ Device Structure

■ Lifecycle of a Device Driver

■ nds::Device::createStructure

■ Defining channels

■ EPICS records’ handling

■ State machines

■ Messaging mechanism

■ Loading FPGA code

■ Time events

■ NDS tools

■ NDS tasks

■ Define driver specific IOC function

■ Software User Manual Review Checklist

■ Function Reference

■ List of doCallbacks functions (for all possible EPICS type variations)

■ areaDetector support

1.3 Definition

AI Analog Input

AO Analog Output

file:///C:/opt/codac-3.1/epics/modules/nds/doc/index.html

Page 3 of 76

CODAC Control, Data Access and Communication

DAQ Data acquisition

FIR Finite Impulse Response

GPIO General Purpose Input/Output

IIR Infinite Impulse Response

IOC Input/Output Controller

SDD Self-Description Data

NDM Nominal Device Model

NDS Nominal Device Support

SEU Single Event Upset

TCN Time Communication Network

UML Unified Modeling Language

1.4 References

[RD1] CODAC Core System Self-Description Data Editor User Manual (32Z4W2)

[RD2] NI Sync EPICS Driver User’s Guide (33Q5TX)

[RD3] asynDriver: Asynchronous Driver Support

http://www.aps.anl.gov/epics/modules/soft/asyn/

[RD4] GigE Vision: Video Streaming and Device Control Over Ethernet Standard,

v2.0

[RD5] ITER Numbering System for Parts/Components (28QDBS)

[RD6] NI-RIO EPICS Module: RIOEM, Engineering Design Document (6WU76X)

[RD7] asynSIS8300-epics-driver - Programmer's Guide (6RK5ST)

[RD8] NI PXI-6259 EPICS Device Support User’s Guide (3DEY52)

[RD9] EPICS Application Developer’s Guide (AppDevGuide)

[RD10] Time Representation in CODAC software (7GDNSX v1.1)

[RD11] EPICS 3-14 Record Reference Manual (RRM-3.14)

[RD12] How to include a new I/O Moudle in SDD (A4WQDZ v1.0)

[RD13] CODAC Core System Application Development Manual (33T8LW v4.4)

https://user.iter.org/?uid=32Z4W2
https://user.iter.org/?uid=33Q5TX
http://www.aps.anl.gov/epics/modules/soft/asyn/
https://user.iter.org/?uid=28QDBS
https://user.iter.org/?uid=6WU76X
https://user.iter.org/?uid=6RK5ST
https://user.iter.org/?uid=3DEY52
http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide/
https://user.iter.org/?uid=7GDNSX
https://wiki-ext.aps.anl.gov/epics/index.php/RRM_3-14
https://user.iter.org/?uid=A4WQDZ
https://user.iter.org/?uid=33T8LW

Page 4 of 76

2 GETTING STARTED

2.1 Using Code Generators

NDS provides the following EPICS templates:

■ nds

■ ndsTime

The first template, ‘nds’ is a general template for DAQ devices, while the second

‘ndsTime’ is a template for timing devices.

2.1.1 EPICS Code Generator

To generate a skeleton driver, use the NDS template for the makeBaseApp.pl

script in a newly created directory:

$ mkdir ndsExample

$ cd ndsExample

$ makeBaseApp.pl -t nds ndsExample

Apart from the driver, this also creates an example EPICS application that uses the

driver. To run the application, you can also create an IOC for it using NDS IOC boot

template:

$ makeBaseApp.pl -i -t nds ndsExample

$ chmod a+x iocBoot/iocndsExample/st.cmd

The template includes the skeleton for a full driver. The developer must then trim-

down the database template files and the C code of the driver to match the

functionalities of the particular device.

2.1.2 CODAC Code Generator

The Maven tool provides a way to generate a code template for future development.

$ mvn iter:newunit -Dunit=m-nds-example

[INFO] MODULE UNIT 'm-nds-example' CREATED

$ cd m-nds-example

$ mvn iter:newapp -Dapp=ndsExample -Dtype=nds

[INFO] EPICS APPLICATION 'ndsExample' CREATED

$ mvn iter:newioc -Dioc=nds-example -Dapp=ndsExample -Dtype=nds

Using target architecture linux-x86_64 (only one available)

[INFO] EPICS IOC 'ndsExample' CREATED

[INFO] IOC 'ndsExample' INCLUDED FOR PACKAGING

Then, edit pom.xml and ensure that the compiled device driver will be packaged for

installation on development and runtime machines by specifying the following install

package (for details on packaging see [RD13]):

 <packaging>

 …

 <package>

 <include type="file"

Page 5 of 76

 source="main/epics/lib"

 target="epics/modules/nds/lib" />

 </package>

The CODAC unit prepared in this way can then be packaged in RPMs:

$ mvn package

make -C ./configure install

…

+ exit 0

[INFO] Successfully packaged: codac-core-3.1-nds-example-

3.1.0.v0.0a1-1.el6.x86_64.rpm

[INFO] PACKAGING COMPLETED (see for .rpm files under 'target'

directory)

The following RPMs are obtained this way:

■ codac-core-3.1-nds-example-3.1.0.v0.0a1-1.el6.x86_64.rpm:

RPM containing the shared library. This RPM should be installed on the

development and target machines.

■ codac-core-3.1-nds-example-ioc-3.1.0.v0.0a1-

1.el6.x86_64.rpm: RPM containing the test IOC application. This RPM

should only be installed on the target machines used for testing.

2.2 Directory Structure of an NDS Device-specific Driver

The directory structure of a NDS device-specific driver is as follows:

.

├── configure # EPICS Makefiles

│ └── ...

├── iocBoot # IOC boot configuration and scripts

│ ├── iocndsExample

│ │ ├── envSystem

│ │ ├── Makefile

│ │ ├── README

│ │ └── st.cmd

│ └── Makefile

├── Makefile # The main Makefile

├── ndsExampleApp # Driver with example application

│ ├── Db # EPICS database templates

│ │ ├── ndsExampleAnalogChannel.template # One file per

channel type

│ │ ├── ...

│ │ └── ndsExampleImageChannel.template

│ ├── driver # Source code of the driver, it will

produced a library

│ │ ├── Makefile # The driver's Makefile

│ │ ├── ndsExampleADIOChannel.cpp # … A/D I/O channel

│ │ ├── ndsExampleADIOChannel.h

│ │ ├── ndsExampleDevice.cpp # … device-level logic

│ │ ├── ndsExampleDevice.h

│ │ ├── ndsExample.h

│ │ ├── ndsExampleImageChannel.cpp # … image acquisition

channel

│ │ └── ndsExampleImageChannel.h

Page 6 of 76

│ ├── Makefile

│ └── src # IOC application for

testing

│ ├── Makefile

│ ├── ndsExampleMain.cpp

│ └── ndsExample.substitutions

└── x.txt

2.3 Minimal Driver

Code of a minimal device driver is the following:

/* The include files for the NDS-based device support. */

#include <ndsManager.h>

#include <ndsDevice.h>

/* Our device-specific driver must extend nds::Device. */

class ExampleDevice: public nds::Device {

public:

 /* The constructor. Delegates to the base class’ constructor

and initializes

 * internal data structures.

 */

 ExampleDevice(const std::string& name): nds::Device(name) {

 }

 /* Construct objects associated with the device (channel

groups, channels). */

 virtual ndsStatus createStructure(const char* portName, const

char* params) {

 return asynSuccess;

 }

};

/* Register the device driver. */

nds::RegisterDriver<ExampleDevice> exampleDevice("ExampleDevice");

The RegisterDriver helper class in the last line registers the ExampleDevice

class with the NDS port driver under the name ExampleDevice. So whenever a device

of type ExampleDevice is created, an instance of the ExampleDevice class is

constructed and its createStructure function is called to initialize it.

EPICS database templates should be provided as well. Templates for records

described in Appendix A are standardized, so for a particular device driver only the

subset that is supported should be used. The templates are available in the Db

directory when generating an NDS device support project (see section 2.1).

Makefile to build the minimal driver is:

TOP = ..

include $(TOP)/configure/CONFIG

The library to produce.

LIBRARY_IOC += ndsExample

Page 7 of 76

Dependencies of the library. EPICS base + NDS port driver.

ndsExample_LIBS += $(EPICS_BASE_IOC_LIBS)

ndsExample_LIBS += asyn

ndsExample_LIBS += ndsCPP

List of source files.

ndsExample_SRCS += ndsExampleDevice.cpp

include $(TOP)/configure/RULES

2.4 Building an EPICS Application

To build an EPICS application, asynDriver, the NDS library and the NDS driver for a

particular device must all be specified in the Makefile. This is achieved by adding

the following libraries:

ndsExampleAppSupport_LIBS += asyn

ndsExampleAppSupport_LIBS += NDS

ndsExampleAppSupport_LIBS += ndsExample

and the following database definition files:

ndsExampleApp_DBD += asyn.dbd

ndsExampleApp_DBD += ndsExample.dbd

Here, ndsExampleApp is the name of the EPICS application and ndsExample is the

name of the device-specific NDS driver.

Page 8 of 76

3 NDS TRACING SYSTEM

NDS provides the following macros for debugging, informational and error output:

#define NDS_CRT(args...) // Critical error, further processing

impossible

#define NDS_ERR(args...) // Error

#define NDS_WRN(args...) // Warning

#define NDS_INF(args...) // Informational output

#define NDS_DBG(args...) // Debug output

#define NDS_TRC(args...) // Tracing output

#define NDS_STK(args...) // Marking entering and exiting from

code section

#define NDS_CRT_CHECK (expression, args…)

NDS_CRT uses the cantProceed function to lock IOC execution. Before putting

the IOC into this state it is useful to provide detailed description of the problem.

NDS_CRT_CHECK (expression, args…) checks an expression and if it is true then

calls NDS_CRT().

3.1 Managing Trace Level

Verbosity of driver logs can be changed by the following IOC function:

epics> ndsSetTraceLevel(traceLevel)

List of trace levels can be checked by:

epics> ndsTraceLevels

1: CRT

2: ERR

3: WRN

4: INF

5: DBG

6: TRC

7: STK

Page 9 of 76

4 DEVICE STRUCTURE

The device structure is described in Figure 1.

Figure 1 Classes diagram

A specific device class can only be inherited from the nds::Device class.

A device specific channel group can be inherited from ChannelGroup or

AutoChannelGroup.

A device specific channel can be inherited from any class including nds::Channel and

below.

4.1 Device Class

A device class provides common functionality for device objects.

4.1.1 ChannelGroup Iteration

for(ChannelGroupContainer::iterator itr = _nodes.begin();

 itr != _nodes.end();

 ++itr)

{

nds::ChannelGroup *gr = itr->second->getBase();

}

4.1.2 Finding Channels

The nds::Device class provides the following functions to find ChannelGroups and

Channels:

 /*** Returns channel group instance by its name.

 *

 */

 ndsStatus getChannelGroup(const std::string& groupName,

ChannelGroup**);

 /*** Returns channel instance by its name.

 *

 */

 class GenericDAQ Classes

ChannelGroup

ADIOChannel

Dev ice Channel

ImageChannel

BaseChannel

+groups

0..*

+device +channels

1..*

+group

Page 10 of 76

 ndsStatus getChannelByName(const std::string& channelName,

Channel**);

 /*** Returns channel instance by group name and channel index.

 *

 */

 ndsStatus getChannel(const std::string& groupName, int idx,

Channel**);

4.2 ChannelGroup

ChannelGroup is a standard class which organizes channels into a group with some

specific parameters. Simple groups are organized by channels type

Analog/Digital/Image, Input/Output.

Channels organization can be also done from a logical perspective, e.g. channels,

dependent on a concrete trigger, represent a trigger group.

nds::ChannelGroup is a base class for such an object. There is also

AutoChannelGroup which provides advanced device configuration options. Channels

can be added to the group automatically at the IOC initialization stage from the

EPICS database.

4.2.1 Iteration of Channels

Channels can be iterated in the following ways:

[NDS v. 2.2.3]

Iterating vector:

std::for_each(_nodes.begin(),

_nodes.end(),

boost::bind(&Channel::on, _1)));

[NDS v. 2.2.4]

Iterating map:

std::for_each(_nodes.begin(),

_nodes.end(),

boost::bind(&Channel::on,

boost::bind<Channel*>(&ChannelContainer::value_type::second,

_1)));

In the general case, any container can be iterated through a type’s iterator:

for(ChannelContainer::iterator itr = _nodes.begin(); itr!=

_nodes.end(); ++itr)

{

 … (itr->second)

}

Page 11 of 76

4.3 Channel

The nds::Channel class is the base class for any kind of channel object.

The nds::ADIOChannel object defines parameters which are common to the Analog

and Digital I/O channels.

4.3.1 Accessing a Device from a Channel

The device can be accessed from nds::ChannelGroup or nds::Channel through the

following field:

 Device* _device;

Page 12 of 76

5 LIFECYCLE OF A DEVICE DRIVER

A device driver distinguishes between 3 phases of IOC functioning: IOC

configuration, IOC initialization, operating and exiting (Figure 2).

Figure 2 IOC state machine

The IOC configuration state is used to configure the structure of the device, i.e. to

define static parameters which will not be changed over the life cycle of the device. In

this stage all classes are created, e.g. Device, ChannelGroup, Channels, etc. This stage

includes all lines in st.cmd before the iocInit function call.

The structure of the device is defined immediately after the IOC shell command

ndsCreateDevice is executed (see Figure 1 for the details). At that time, the

constructor is called, and immediately afterwards the createStructure Device’s

member function. The whole device structure should be created inside the

createStructure member: required ChannelGroups and Channels. ChannelGroup must

be registered within a device. If it is not registered, then processing of channel groups

is not started. Similarly for Channels, each Channel must be registered within a

relevant channel group. After registration _portAddr and _portName fields are

populated by relevant values. A Channel’s number within a group can be got through

the getChannelNumber() method after the channel is registered.

 stm IOCInitialization

IOC configuration

IOC Initilization

Operating

Final

Initial

Exiting

Page 13 of 76

Figure 3 Creation and destruction of objects

In the case that the createStructure member returns an ndsError then IOC execution

will be locked. This problem is treated as critical and further processing is impossible.

IOC initialization happens when the iocInit function is called. In this state all

connections between EPICS records and NDS PV handlers (getter and setter) will be

established. All EPICS I/O interrupts will be registered. AutoChannelGroup will fill

their channels list on this stage.

Exiting happens when exit is explicitly requested or by Ctrl-C. Then, NDS cancels all

existing tasks and calls the destroy() function member for each class and then deletes

objects.

When IOC initialization begins, the state of all objects is changed to IOCInitialization.

This is a good point to take any action that needs to be done before initialization starts

and can be done by registering the state event handler (see Section 9). For example,

the configuration done via IOC shell commands will already have been done at this

point and all objects will have relevant operation to operate (_portAddr, _portName).

When IOC initialization is complete, the state of all objects is changed to OFF. At this

stage, the initial processing of records as defined in the IOC’s EPICS database is

complete. Thus, the records will have been fully configured. This is a good place to

 sd Destroy

Actor

EPICS ndsManager::

ndsDevice::

ndsChannelGroup::

ndsChannel::

ndsDriver::

loop

loop

loop

loop

loop

ndsCreateDevice()

CreateDevice()

CreateDevice()

createStructure()

registerChannelGroup()

registerChannel()

Exit()

atExit()

destroy()

destroy()

destroy()

delete()

delete()

delete()

Page 14 of 76

■ check validity of configuration,

■ spawn any threads that may be needed,

■ initialize data structures,

■ read information (versions, model, etc.) from the device,

■ allocate memory,

■ etc.

When the EPICS process is about to exit, the destroy function is called. In destroy,

the device driver should:

■ put device in a safe state,

■ disconnect from the device and terminate the threads.

It is recommended that it waits for the threads to complete – i.e., signals them to

terminate, and then waits for them to actually terminate.

Page 15 of 76

6 NDS::DEVICE::CREATESTRUCTURE

Device structure is created inside nds::Device::createStructure. This method is called

after the device object is created. At call time, the device object has all parameters

parsed and everything is prepared to create children objects. The CreateStructure

function is only used to create a virtual device structure. It is not the place to open the

device or to start the configuration process of the device.

6.1 Accessing Initialization Parameters

To access initialization parameters that were set with parameters of the

ndsCreateDevice IOC shell command, use the following functions:

std::string strParam = getStrParam("PARAM1", "default value");

int intParam = getIntParam("PARAM2", 15);

These parameters are available throughout most of the lifecycle of the device object:

from the time when the createStructure function was called, to the time when

destroy finishes executing. Usually, however, the device-specific driver will

process initialization parameters in createStructure (e.g., by initializing

internal data structures) and will no longer need to consult them at a later time.

The getStrParam function returns the value of initialization parameter PARAM1 as

a string, or the provided default value if the parameter is not specified in the call to

ndsCreateDevice. Similarly, getIntParam returns the integer value of the

requested parameter.

For example, if st.cmd defines:

ndsCreateDevice "_APPNAME_", "$(PORT)",

"FILE=/tmp/q,N_AI=2,N_AO=3,N_DI=4,N_DO=5,N_DIO=6,N_IMAGE=7"

Then parameters can be accessed:

std::string strParam = getStrParam("FILE", "/dev/testdev");

int numAI = getIntParam("N_AI", 0);

int numAO = getIntParam("N_AO", 0);

int numDI = getIntParam("N_DI", 0);

…

Page 16 of 76

7 DEFINING CHANNELS

A device can consist of multiple channel groups, and each channel group consists of

multiple channels. Usually, but not necessarily, all channels within a channel group

are of the same type (e.g., analog inputs, analog outputs, digital inputs/outputs, etc.).

Each channel group must be assigned a unique name. For each channel group, the

NDS creates an asyn port that is used to communicate with channels within this

group. The port name is formed by the device port name plus channel group name

(lowercase) separated by dots.

For example, for a channel group “AI”, containing analog inputs and a device

registered with port name “pxi6368.0”, the port name of the “AI” channel group will

be “pxi6368.0.ai”

Device and channel group functions are accessible though the main device asyn port

through different addresses. The device’s address is 0, while addresses of the channel

groups start from 1. The channel group’s address is assigned automatically according

to the order of the channel groups’ registration.

Channels have sequencing numbers and are numbered automatically according to its

registration.

Example of port structure relatively to driver object’s functions (port:address)

■ pxi6368.0:0 – device functions.

■ pxi6368.0:1 – “AI” channel group functions.

● pxi6368.0.ai:0 – AI0 channel’s functions.

● pxi6368.0.ai:1 – AI1 channel’s functions.

● …

● pxi6368.0.ai:31 – AI31 channel’s functions.

■ pxi6368.0:2 – “DIO” channel group functions.

● pxi6368.0.dio:0 – DIO0 channel’s functions.

● pxi6368.0.dio:1 – DIO1 channel’s functions.

● …

● pxi6368.0.dio:15 – DIO15 channel’s functions.

There are two technical implications that need to be considered when assigning

channels to channel groups:

■ Meaning of asyn addresses. Combination of asyn port and address must be

unique. Thus, it is possible for AI channel 0 and DIO channel 0 since both have

asyn address of 0, provided that they are in different channel groups. If instead

the AI0 and DIO0 channels were both part of the same channel group, they

would necessarily have different asyn addresses to avoid conflict (e.g., AI0

would be 0 and, DIO0 would be, say, 32, if there were 32 AI channels using

addresses from 0 to 31). This would make the EPICS database more difficult to

configure, as channel-asyn address mapping would need to be considered.

■ Concurrency. Whenever the asynDriver makes a call to a function of a port

driver, it locks the port. Thus, two functions of the same port cannot be executed

concurrently. This implies that functions of the same channel group cannot

execute concurrently. While in most cases such a locking strategy is correct and

optimal, that is not necessarily always the case:

Page 17 of 76

● If locking is needed across channel groups, then the developer of the device-

specific NDS driver must use locking explicitly. epicsMutex from EPICS'

libCom library [RD9] is the recommended mechanism to implement such

locking.

● If all channels are independent (i.e., no other channels need to be locked

when code for a particular channel is executing), then the channels can be put

in separate channel groups to improve concurency. The extreme scenario is

when each channel would be put in its own channel group – then, there

would be no locking among channels.

7.1 Manual Channel Creation and Registration

The place in the device-specific NDS driver code where the structure of the device is

defined is the createStructure function, which is overridden in the device’s

derivative of the NDS Device base class. This function must create channel groups

and channel objects, and register channel objects with channel group objects. It might

look like this:

ndsStatus ExampleDevice::createStructure(const char* portName,

const char* params) {

 /* This device has two channel groups. */

 nds::ChannelGroup *cgAI = new nds::ChannelGroup("AI");

 nds::ChannelGroup *cgDIO = new nds::ChannelGroup("DIO");

 int i;

 /* Both channel groups have 32 channels each. */

 for(i = 0; i < 32; ++i) {

 cgAI->registerChannel(new ExampleAIChannel());

 cgDIO->registerChannel(new ExampleDIOChannel());

 }

 return asynSuccess;

};

In this example, 2 additional asyn ports will be created for “AI” and “DIO” channel

groups respectively. AI channel group will have address 1 and DIO channel group

will have address 2.

Classes ExampleAIChannel and ExampleDIOChannel must extend the

Channel base class.

7.2 Automatic Channel Object Creation and Registration

NDS provides a method to create and register channels in an automatic mode. In this

mode NDS waits for EPCIS DB initialization and creates the required channels

automatically. This allows for keeping a required minimum number of active

channels.

To allow NDS to configure channels automatically nds::AutoChannelGroup should be

used. The developer should provide a fabric function to define how the channel

should be created. The fabric function should return an instance of nds::Channel. This

fabric is passed to AutoChannelGroup, on its creation, and will be automatically

called for each required channel.

Page 18 of 76

/**

 * Fabric function for automatic channels creation.

 */

nds::Channel* createPFI()

{

 return new Terminal();

}

ndsStatus _APPNAME_Device::createStructure(const char* portName,

const char* params)

{

 // Creating AutoChannelGroup object.

 nds::ChannelGroup *channelGroup = new

nds::AutoChannelGroup("trg", &createPFI);

 return ndsSuccess;

}

createPFI is a fabric function which defines which channel class should be

instantiated.

AutoChannelGroup constructor accepts fabric function as a parameter.

Page 19 of 76

8 EPICS RECORDS’ HANDLING

NDS provides a way to connect EPICS record to c++ call-back functions. These

functions called record’s handlers. For each record NDS provides 2 functions: getter

and setter (see Figure 4 Handling CA requests.). Getter and setter are used for

synchronous record processing.

Figure 4 Handling CA requests.

NDS standardizes several functions so as to enforce the interface towards the users of

the device. The list of functions is given in Appendix A , where column Function

provides the suffix of the name of the function in C++ that implements it.

NDS also provides asynchronous record updating through EPICS interrupts system.

Each record marked with SCAN field equivalent “I/O Interrupt” is registered within

NDS. Registered means that NDS owns interrupt ID which could be used to update

record through doCallbacks functions (see Figure 5 Asynchronous record update).

 sd RecordsHandling

CA clinet

EPICS asyn NDS

caput CLKF()

setClockFrequesny()

caget CLKF()

getClockFrequency()

Page 20 of 76

Figure 5 Asynchronous record update

8.1 Synchronous EPICS Record Handling

Developers can easily add new PVs and register handlers for them by overloading

registerHandlers member. This function accepts a PV container as argument.

virtual ndsStatus registerHandlers(PVContainers* pvContainers);

This member can be overloaded for the Device, ChannelGroups, and Channels.

|There are macro definitions for the handler registration:

■ NDS_PV_REGISTER_OCTET

■ NDS_PV_REGISTER_INT32

■ NDS_PV_REGISTER_FLOAT64

■ NDS_PV_REGISTER_INT8ARRAY

■ NDS_PV_REGISTER_INT16ARRAY

■ NDS_PV_REGISTER_INT32ARRAY

■ NDS_PV_REGISTER_FLOAT32ARRAY

■ NDS_PV_REGISTER_FLOAT64ARRAY

■ NDS_PV_REGISTER_UINT32DIGITAL

Macro definitions accept the following parameters:

reason This is a text reason which will be used in INP or OUT fields of the record.

writer Pointer on a write function.*

reader Pointer on a read function.*

interruptId This is an address of integer variable to store interruptId for this reason. For each string reason,

the NDS driver will assign an integer code that is required by asynDriver. This code will be

stored in this variable. This code should be used together with doCallbacks functions to initiate

interrupt (see asynPortDriver documentation).

Read and write functions should match prototypes (see Appendix A)

For example,

 sd doCallbacks

CA client

EPICS NDS

alt

[initi l ization]
registerInterrupt()

doCallbacksOnInterrupt()

value changed()

Page 21 of 76

NDS_PV_REGISTER_OCTET("Firmware", &Device::writeOctet,

&Device::getFirmware, &interrupt);

Registration requires both writer and reader, but occasionally it is useless to have

both. In this case, the developer can use fake handlers which are stubs. The following

functions are defined which can be used as a stub:

■ writeOctet / readOctet

■ writeInt32 / readInt32

■ writeFloat64 / readFloat64

■ writeInt8Array / readInt8Array

■ writeInt16Array / readInt16Array

■ writeInt32Array / readInt32Array

■ writeFloat32 / readFloat32

■ writeFloat64 / readFloat64

■ writeUInt32Digital / readUInt32Digital

8.2 Getters’ Call on Initialization

[Supported from: v.2.2.3]

During IOC initialization EPICS calls getter functions for all registered records. This

allows setting of initial values to the record. If a default value was already set by

another tool or defined in the DB file, then it will be overwritten. To prevent

overwriting of default values, the NDS getter should return an ndsError status. The

example below provides a solution for this case:

ndsStatus Channel::getStreamingURL(asynUser *pasynUser, char

*data, size_t maxchars, size_t *nbytesTransfered, int *eomReason)

{

 if (getCurrentState() == CHANNEL_STATE_IOC_INITIALIZATION)

 {

 // Prevent overwriting of VAL value on initialization

stage

 return ndsError;

 }

 return ndsSuccess;

}

8.3 Overriding a Standard Function

NDS standardizes several functions so as to enforce the interface towards the users of

the device. The list of functions is given in Appendix A , where column Function

provides the suffix of the name of the function in C++ that implements it. Two C++

functions correspond to each row in the table:

■ The getter (prefix get), which retrieves the value from the device.

■ The setter (prefix set), which applies the value to the device.

All functions are defined as virtual functions in the base classes, so they are meant to

be overridden in the derived classes by the device-specific NDS driver.

Page 22 of 76

8.3.1 Example: Reading Value from Channel

For example, to overwrite the channel’s read function (i.e., acquire data from device),

you would declare it in the derived channel class as follows:

// The .h file.

class ExampleChannel: public nds::ADIOChannel {

 …

public:

 virtual ndsStatus getValueFloat64(asynUser* pasynUser,

epicsFloat64 *value);

 …

};

// The .cpp file.

ndsStatus ExampleChannel::getValueFloat64(asynUser* pasynUser,

epicsFloat64 *value) {

 value = …; / whatever code is needed to get the value from

the hardware */

 return ndsSuccess;

}

8.4 Asynchronous EPICS Record Handling

Supported from: v.2.2.3

Requires: asynDriver v.4.21

There are set of functions for asynchronous records update. There is a set of

doCallbacks functions for each asynType, for example:

ndsStatus doCallbacksInt8Array(…);

ndsStatus doCallbacksInt16Array(…);

ndsStatus doCallbacksInt32Array(…);

ndsStatus doCallbacksFloat32Array(…);

ndsStatus doCallbacksFloat64Array(…);

ndsStatus doCallbacksGenericPointer(…);

ndsStatus doCallbacksInt32(…);

ndsStatus doCallbacksFloat64(…);

ndsStatus doCallbacksOctet(…);

ndsStatus doCallbacksUInt32Digital(…);

There are overloading methods for this list which serve customer needs (see Appendix

B).

8.5 Using Asynchronous Update

1. Record should be present in DB files.

It can from NDS standard records or a device specific record.

1.1. AsynType of record is defined in DB file:

field(DTYP, "asynInt32")

Page 23 of 76

1.2. Record should be configured to for I/O interrupt scanning type [X] (see

EPICS RRM [RD11]):

field(SCAN, "I/O Intr")

1.3. Record should be connected to the required asyn reason:

field(INP, "@asyn($(ASYN_PORT).$(CHANNEL_PREFIX), $(ASYN_ADDR))

Event")

For example:

record(longin, "$(PREFIX)-$(CHANNEL_ID)-EVT") {

 field(DESC, "Event")

 field(DTYP, "asynInt32")

 field(INP, "@asyn($(ASYN_PORT).$(CHANNEL_PREFIX),

$(ASYN_ADDR)) Event")

 field(SCAN, "I/O Intr")

 field(TSEL, "$(PREFIX)-$(CHANNEL_ID)-TMST.TIME")

}

2. Record should be registered within NDS.

To do asynchronous update, the interrupt id is required.

ndsStatus Instance::registerHandlers(nds::PVContainers*

pvContainers)

{

nds::<Baseclass>:: registerHandlers(pvContainers);

…

 NDS_PV_REGISTER_INT32("Event",

&nds::Base::setInt32,

&ExADIOChannel::getInt32,

&idEvent); // getting interrupt ID for ‘Event’ reason.

…

 return ndsSuccess;

}

3. Now everything is ready to update record asynchronously.

doCallbacksInt32(value, // new value

idEvent); // interrupt ID

8.6 Asyn Reason Arguments

NDS provides a way to pass arguments to asyn reason from the EPICS DB. It means

that the OUT/INP parameter of a record can be:

@asyn($(ASYN_PORT).$(CHANNEL_PREFIX), $(ASYN_ADDR)) Reason(arg1)

Here arg1 is the argument which will be accessible from the device support handlers.

NDS parses the asyn reason string and populates fields of the DriverCommand class

instance:

Page 24 of 76

class DriverCommand

{

public:

 /// Vector of reason's arguments

 std::vector<std::string> Args;

 /// Reason's getter. Returns clear reason.

 std::string getReason() { return _reason; }

 …

};

Here:

■ getReason() returns a reason, without arguments, which will be used to call

handlers;

■ Args is a vector of arguments which were passed to reason.

A pointer to the DriverCommand instance will be stored in the userData field of the

asynUser instance and can be accessed from setter/getter in the following way:

ndsStatus Terminal::setReason(asynUser* pasynUser, epicsInt32

value)

{

 // Reason's arguments is accessible through DriverCommand

class

 nds::DriverCommand *command = (nds::DriverCommand*)pasynUser-

>userData;

8.7 Records Timestamping

EPICS allows timestamping of PVs from the device support module. This allows

timestamping of records synchronously through setters/getters and asynchronously

through the interrupt mechanism. The EPICS record should be configured to select

the requested time stamping source (see EPICS Record Reference Manual [RD11]).

Each EPICS record has a TSE field which indicate the time stamp source. In this case,

the value must be “-2”.

Other records can use this record as a timestamp source by referencing it through the

TSEL field. The TSEL field should point to the TIME field of the timestamp record:

 field(TSEL, "$(PREFIX)-$(CHANNEL_ID)-TMST.TIME")

8.7.1 Synchronous Timestamp Update

The synchronous method uses a record’s setter and getter to update data and

timestamps. They will be called synchronously when the EPICS channel access client

sets or reads a value accordingly. Each setter and getter has an asynUser argument

which is used to propagate the actual timestamp.

The EPICS record should be configured to read timestamps from device support:

 field(TSE, "-2")

Page 25 of 76

Example of record’s timestamp setting:

ndsStatus Device::getTime(asynUser *pasynUser, epicsInt32 *value,

size_t nelements, size_t *nIn)

{

 epicsTime time = epicsTime::getCurrent();

 epicsTimeStamp stamp = (epicsTimeStamp)time;

 pasynUser->timestamp = stamp;

 *nIn = 2;

 value[0] = stamp.secPastEpoch;

 value[1] = stamp.nsec;

 return ndsSuccess;

}

8.7.2 Asynchronous Timestamp Update

The asynchronous data update mechanism uses EPICS interrupts to propagate data.

To use this mechanism, an EPICS record’s scan option should be configured to “I/O

Intr” and device support (-2) should be selected as a timestamp source:

 field(SCAN, "I/O Intr")

 field(TSE, "-2")

Now the EPICS record is ready to receive interrupts and set the desired timestamp.

NDS provides the following function set to update data and timestamps

simultaneously:

ndsStatus doCallbacksInt8Array(epicsInt8 *value, size_t nElements,

int reason, int addr, epicsTimeStamp timestamp);

ndsStatus doCallbacksInt16Array(epicsInt16 *value, size_t

nElements, int reason, int addr, epicsTimeStamp timestamp);

ndsStatus doCallbacksInt32Array(epicsInt32 *value, size_t

nElements, int reason, int addr, epicsTimeStamp timestamp);

ndsStatus doCallbacksFloat32Array(epicsFloat32 *value, size_t

nElements, int reason, int addr, epicsTimeStamp timestamp);

ndsStatus doCallbacksFloat64Array(epicsFloat64 *value, size_t

nElements, int reason, int addr, epicsTimeStamp timestamp);

ndsStatus doCallbacksInt32(epicsInt32 value, int reason, int addr,

epicsTimeStamp timestamp);

ndsStatus doCallbacksFloat64(epicsFloat64 value, int reason, int

addr, epicsTimeStamp timestamp);

ndsStatus doCallbacksOctet(char *data, size_t numchars, int

eomReason, int reason, int addr, epicsTimeStamp timestamp);

Each function has a timestamp argument to provide the actual update of the time.

Page 26 of 76

8.8 Read Back Value

Figure 6: Read back values

The EPICS out record does not allow setting of its value from with the setter function.

It means that if the value passed to it cannot be applied and needs to be corrected

within the handler, then handler is unable to notify the user about the actual value.

The read back value PV could help. This solution includes 2 PV’s: system parameter

(PV in Figure 6) and “read back value” (PV_RBV in Figure 6). PV is an output

EPICS record and PV_RBV is an input EPICS record with scanning type I/O interrupt

events. Asyn does not provide a way to return an output record value from a device

support module and this is why the second PV is required. When the actor sets a

parameter from the CA tool, the relevant setter for the selected PV is called (setPV in

Figure 6). The setter processes the request and then calls the doCallbacks function

with actualValue which was set to update read back value.

DB code

record(longout, "$(PREFIX)-TEST") {

 field(DESC, "TEST of RBV")

 field(DTYP, "asynInt32")

 field(OUT, "@asyn($(ASYN_PORT), $(ASYN_ADDR))TestRBV")

}

record(longin, "$(PREFIX)-TESTRBV") {

 field(DESC, "TEST of RBV")

 field(DTYP, "asynInt32")

 field(INP, "@asyn($(ASYN_PORT), $(ASYN_ADDR))TestRBV")

 field(SCAN, "I/O Intr")

}

Source code:

ndsStatus ExDevice::registerHandlers(nds::PVContainers*

pvContainers)

 sd RBV

Actor

PV ndsChannel:: PV_RBV

caput(newValue)

setPV(newValue)

doCallbacks(actualValue)

set(actualValue)

caget(actualValue)

Page 27 of 76

{

 // Example of additional PV Record handlers' registration

 // IMPORTANT! It is important to call parent register

function

 // to register all default handlers.

 nds::Device::registerHandlers(pvContainers);

…

 NDS_PV_REGISTER_INT32(

 "TestRBV",

 &ExDevice::setTestRBV,

 &ExDevice::getTestRBV,

 &idTestRBV);

…

 ndsSuccess;

}

ndsStatus ExDevice::setTestRBV(asynUser* user, epicsInt32 value)

{

 NDS_INF("ExDevice::setTestRBV = %d", value);

 doCallbacksInt32(101, idTestRBV, _portAddr);

 return ndsSuccess;

}

8.9 Get asynAddr from get/set Function

Sometimes it is required to get the original asynAddr from within EPICS record’s

setter or getter functions. To do this, the following procedure could be used:

 int portAddr;

 pasynManager->getAddr(pasynUser, &portAddr);

Page 28 of 76

9 STATE MACHINES

Each device and each channel has a state, as described in sections 9.1 and 9.3. The

device-specific driver interacts with the state machines in two ways:

■ By setting the state. For example, if a fault is detected at the level of a channel,

the channel should go to the ERROR state.

■ Reacting on a change of state. For example, when the state of the channel goes

to OFF, all activities on the channel should stop.

For requesting transition to a state, the following device-level functions are available

in the Device base class:

■ on(): request transition to the ON state.

■ off(): request transition to the OFF state.

■ error(): unconditional transition to the ERROR state.

■ fault():unconditional transition to the FAULT state.

■ reset():unconditional transition to the RESETTING state.

In the BaseChannel base class of all channels, the following channel-level

functions are defined:

■ disable(): request transition to the DISABLE state.

■ start(): request transition to the PROCESSING state in which the data

acquisition or waveform generation of the channel is in progress.

■ stop(): request transition to the ON state.

■ error(): unconditional transition to the ERROR state.

■ reset():unconditional transition to the RESETTING state.

Some transitions are conditional – i.e., they may be vetoed by the state transition

listeners, while others are unconditional.

To react to a change, a handler function that is called during the state transition must

be registered. Three kinds of handlers can be registered:

■ registerOnRequestStateHandler: the handler is called to confirm

state transition.

■ registerOnLeaveStateHandler: the handler is called when a state is

exited.

■ registerOnEnterStateHandler: the handler is called when a state is

entered.

These functions are defined in the AbstractStateMachine class, from which

both Device and BaseChannel base classes for devices and channels,

respectively, are derived.

The following example registers handlers for confirming state transitions and for

entering states:

// The .cpp file. Corresponding .h file not shown.

// A good place to register the state transition handlers is in

the constructor:

Page 29 of 76

ExampleDevice::ExampleDevice(const std::string& name):

nds::Device(name) {

 …

 registerOnRequestStateHandler(

 nds::DEVICE_STATE_INIT,

 nds::DEVICE_STATE_ON,

 boost::bind(&ExampleDevice::onSwitchOnRequest, this, _1,

_2));

 registerOnEnterStateHandler(

 nds::DEVICE_STATE_OFF,

 boost::bind(&ExampleDevice::onSwitchOff, this, _1, _2));

 …

}

ndsStatus exDevice::onSwitchOnRequest(nds::DeviceStates from,

nds::DeviceStates to)

{

 // Handling switch ON device request

 // If this function returns ndsError device will not be

switched ON.

 return ndsSuccess;

}

The example above shows how to define the onRequestState handler

onSwitchOnRequest. When the user calls the on() function, this handler will be

called (see Figure 7). If this handler returns ndsSuccess then the device

successfully goes to the ON state. If it returns ndsFault, then the device will go the

FAULT state.

The NDS state machine provides 2 error states ERROR and FAULT (see Figure 9).

FAULT state is used when operation of device is impossible, ERROR state for all

other cases.

There are 4 NDS’s status codes which can redirect transition from transitions request

operation (see Figure 7):

■ ndsSuccess – transition proceeds to requested state

■ ndsError – result state ERROR

■ ndsFault – result state FAULT

■ ndsBlockTransition – object stays at the same state which was before transition

requested.

Page 30 of 76

Figure 7 Request state activity diagram.

The developer can register as many state events’ handlers as possible. These handlers

will be called in order of registration. In case of transition request handling, all

handlers should return a status of ndsSuccess as it is only in this case that

transitions will be treated as allowed.

9.1 Enable Objects

Each object has an ENBL record which describes the global state of the object (Figure

8).

Figure 8: Global state machine

 act requestState

Call onRequest handlers

(::)

Call onLeav e handlers

Set requested state

Call onEnter handlers

Call onLeav e handlers

Set ERROR state

Call onEnter handlers

Call onLeav e handlers

Set FAULT state

Call onEnter handlers

ndsSuccess

ndsError

ndsBlockTransition

ndsFault

 stm Global state machine

DISABLED

ENABLED

Page 31 of 76

An enabled status of this record means that the object is configured and ready to be

used. This record could be switched independently for each object. If an object has

this record enabled, then it means that as soon as the parent object switches to the

active state (ON for Device objects, PROCESSING for ChannelGroup and Channel

objects) this object will be forced to also switch to the active state.

NDS provides isEnabled() method to get the global status of the object.

9.2 Device’s State Machine

Figure 9 Device's state machine

ERROR and FAULT states are accessible from any other state.

9.2.1 Fast init

An ON message sent to a device forces the state machine to switch to the INIT state.

If the device does not require the INIT procedure then the device can be automatically

switched to the ON state, by call this function from device constructor:

 stm Dev ice

OFF

ON

Unknown

IOC
Initialization

INIT

ERROR

FAULT

RESETTING

Initial

Final

off

fault

reset
off

error

on

on

reset

fault

off

Page 32 of 76

enableFastInit();

It will register an onEnter handler for INIT state. This handler requests the ON state.

9.2.1.1 Example of One Device File Handling

If the device is using one device file (/dev/device_name) to access all components

(Segments, ChannelGroups, Channels) then the device object should take care of the

lifecycle of the device file inside NDS. This case requires 2 transition handlers on

NDS::Device level: onRequestState and onEnterState.

■ onRequestState will open the device file and check if all works properly.

■ onEnterState will pass the opened device pointer to all ChannelGroups. It will

be called only in the case that the request state succeeds.

Steps

1. Inherit your ChannelGroup from nds::ChannelGroup.

2. Define setter for device file pointer inside your ChannelGroup class.

class yourChannelGroup: public nds::ChannelGroup

{

DeviceAPI* _deviceAPI;

public:

/// Setter for device file pointer.

setDeviceAPI(deviceAPI*)

{

_deviceAPI = deviceAPI;

}

}

3. Define openDevice member inside your device class and implement it. Your

device object is inherited from nds::Device. This member will be called when

the required transition is requested.

ndsStatus openDevice()

{

 _deviceAPI = open(…); // new DeviceAPI() in case of

_deviceAPI is class;

 if (deviceAPI)

 return ndsSuccess;

 return ndsError;

}

4. Define setDeviceAPIPointer member inside your device class. This member

will be called when the actual transition happens and the device file pointer

exists.

ndsStatus setDeviceAPIPointer()

{

ChannelGroupMap::iterator itr;

for(itr = _nodes.begin(), itr != _node.end(), ++itr)

try

Page 33 of 76

{

yourChannelGroup *group =

dynamic_cast<yourChannelGroup*> (itr.second ->getBase());

group -> setDeviceAPI(_deviceAPI);

}catch(...)

{

 NDS_CRT(“Can’t process.”);

}

return ndsSuccess;

}

5. Define closeDevice member inside your device class. This member will be

called, when the device enters the OFF state, to close device.

ndsStatus closeDevice()

{

if (_deviceAPI)

 close(_deviceAPI); // delete _deviceAPI; in case

deviceAPI is class

return ndsSuccess;

}

6. register onRequestState(init, on, openDevice)

7. register onEnterState(on, setDeviceAPIPointer)

8. register onLeaveState(on, closeDevice)

Page 34 of 76

9.3 ChannelGroup and Channel State Machine

Implementation

Figure 10: Channel state machine.

ERROR and FAULT states are accessible from any state.

9.4 How to Block Undesired Transitions

Sometimes it is required to block a transition from, for example, the RESETTING to

the ON state, to allow only transition through INIT state.

There are default onStateRequest handlers for this case, namely

onWrongStateRequested, for nds::Device, nds::BaseChannel classes which could be

registered on undesired transition. These handlers print out warning messages and

return ndsBlockTransition status. As it was described earlier the ndsBlockTransition

status prevents switching of instance state.

Example:

// If you would like to forbid transition

// from OFF state to ON state uncomment code below.

// This default request handler returns ndsBlockTransition,

// so device will stay in the same state (OFF).

 registerOnRequestStateHandler(

 nds::DEVICE_STATE_RESETTING, // Current state

 nds::DEVICE_STATE_ON, // Requested state

 stm Channel2.3

State managed by user

Disabled Processing

Fault

ErrorResetting

Unknown

IOCInitilization

Initial

Final

Object is

instantiated.

Object is

registered and IOC

initialization is in

progress.

disabled

fault()

reset()

error()reset()

start()

[Configured]

disable

Page 35 of 76

 boost::bind(&nds::Device::onWrongStateRequested, this,

_1, _2));

9.5 Reset Operation

Supported from: v.2.2.1

A general way of performing resetting is to start the resetting operation from an

onEnterState handler and start an nds::ThreadTask which will track the device status

and when device is ready, after resetting, will switch the device to the required state

(OFF, INIT, ON).

9.5.1 Switching from the RESETTING State

The RESETTING state is accessible by the reset() command, but switching from

the reset() command is blocked through the standard functions on(), off(),

and init(). Transition to the required state could be requested in the following

way:

Example: Requesting ON state for Device instance

getCurrentStateObj()->requestState(this, nds::DEVICE_STATE_ON);

For Channel/ChannelGroup instance (requesting ENABLED state):

getCurrentStateObj()->requestState(this,

nds::CHANNEL_STATE_ENABLED);

If requesting an unconditional transition is required, without calling onRequestState

handlers, then the following code could be used:

getCurrentStateObj()->setMachineState (this,

nds::CHANNEL_STATE_ENABLED);

The ERROR or DEFUNCT states could be requested in the normal way through

calling the error() and defunct() functions respectively.

Page 36 of 76

10 MESSAGING MECHANISM

10.1 Handling Messages

NDS provides a means for users of NDS devices to send messages (e.g., commands)

to the device or its channel, so that it can take some action (e.g., trigger a state

transition, perform self-tests or upload firmware). Messages are received

automatically by the NDS (i.e., a single Channel Access put is performed to deliver a

message).

To register a handler for messages, use the function

registerMessageWriteHandler. This function is defined in class Base,

which is the base class of both Device and Channel – therefore, it is available at

both device and channel levels.

Example:

// The .cpp file. Corresponding .h file not shown.

// A good place to register the message handlers is in the

constructor:

ExampleDevice::ExampleDevice(const std::string& name):

nds::Device(name) {

 …

 registerMessageWriteHandler(

 "MY_MESSAGE", /// Name of the message type

 boost::bind(

 &ExampleDevice::onMyMessage, /// Address of the handler

 this, /// Object which owns the

handler

 _1,_2) /// Stub functors (see boost::bind

documentation for details.)

);

 …

}

ndsStatus ExampleDevice::onMyMessage(asynUser* pasynUser, const

nds::Message& msg) {

 Message response;

 response.messageType = msg.messageType;

 response.insert("TEXT", "Not implemented");

 response.insert("CODE", "-1");

 doCallbacksMessage(response);

 return ndsSuccess;

}

10.2 Standard Message Types

NDS predefines the following message types and handlers for them.

■ Message types commons to all objects

● RESET – handler: Base::handleResetMsg. It requests resetting process to be

initiated.

Page 37 of 76

■ Device specific messages

● ON – handler: Base::handleOnMsg. It requests switch Device ON (see state

machine discription for details).

● OFF – handler: Base::handleOffMsg. It requests switch Device OFF (see

state machine description for details).

■ ChannelGroup and Channel specific message types

● START – handler: BaseChannel::handleStartMsg. It requests to start

Channel’s (ChannelGroup) processing. ChannelGroup should be in

processing state to allow activate channel. START command doesn’t depend

on object global state (ENABLED/DISABLED).

● STOP - handler: BaseChannel::handleStopMsg. I requests to stop Channel’s

(ChannelGroup) processing. Object will be put to DISABLED state. STOP

command doesn’t depend on object global state (ENABLED/DISABLED).

All handlers could be overloaded. The overloading method should provide a common

messaging response.

10.3 CSS Messaging Support

Messaging (MSGS/MSGR) is represented by a waveform record. CSS’s "Text Input"

and "Text Update" components should be used to display the waveform string.

Format for these components should be "String" to see the text. Selecting "Default"

will show the elements in ASCII format.

Page 38 of 76

11 LOADING FPGA CODE

When the user sets the FWUP record, the NDS driver loads the binary image referred

to in the meta-information XML file and checks it (SHA1 checksum, compatibility of

the target, etc). If all is OK, a device-specific function is called that receives the

binary image as parameter, and must pass it to the hardware (Figure 11).

Figure 11 Firmware update activity diagram

11.1 NDS v2.0 Implementation

This mechanism is not yet implemented in NDS v2.0, so in this version the name of

the file is passed through the FWUP variable and the uploading function must be

called from the PV’s handler.

11.2 NDS v2.1 Implementation

NDS v2.1 fully supports xml parsing.

 act Firmware

Meta-information parsing«iterative»

Meta-file available?

Check compatibility Stub with default

behaviour

Download bin file

Check SHA-1

Update firmware Stub

Start

Final

FlowFinal

Page 39 of 76

The update process will iterate through the firmware sections of the meta-information

file (see Appendix D) and check if target for each section is compatible with the

hardware. If a firmware compatible binary image is downloaded, the SHA-1 sum for

the image is checked and the update firmware procedure is called. The check

compatibility function has a default implementation which compares hardware model,

hardware revision, and firmware revision (see A.2). The update firmware stub has the

following signature:

virtual ndsStatus updateFirmware(const std::string& module,
const std::string& image, const std::string& method);

where:

■ module – is a target module name (device dependent);

■ image – path to image file;

■ method – update method (device dependent);

ndsStatus ExDevice::updateFirmware(const std::string& module,

const std::string& image, const std::string& method)

{

 NDS_INF("Updating firmware.");

 NDS_INF("Module to update: %s Current firmware version: %s

", module.c_str(), _firmwareVersion.c_str());

 NDS_INF("Image file: %s", image.c_str());

 if (!boost::filesystem::exists(image))

 {

 NDS_ERR("Update procedure was not able to find : %s",

image.c_str());

 return ndsError;

 }

 <firmware loading>

 return ndsSuccess;

}

A specific NDS device support module is responsible for implementing the update

procedure.

Page 40 of 76

12 TIME EVENTS

A time event is an abstract event which can happen on a terminal line. Each event is

defined by event id (the event name can be used as the event id) and source terminal.

The quantity of events is not limited.

Each time event represents one event of the following types:

■ Future Time Event (FTE)

■ Pulse

■ Clock

The time event structure is hierarchical. FTE is a base. Pulse and clock extend it

consecutively.

FTE has following PV’s:

■ O – origin time - expressed as a double and representing an absolute time in

seconds with a maximum resolution of a millisecond;

■ D – delay - expressed as a double and representing a time in seconds with the

resolution of a nanosecond and with an absolute limit of one day and

representing delay of this occurrence from the time origin.

■ E – enabled/disabled;

■ L – level of scheduled time event;

■ A – acquisition - provides the user with the information that the timing has been

triggered with a time measurement expressed as a double and representing delay

of this occurrence from the time origin.

Pulse adds width PV to this list:

■ W – width of event in seconds with the resolution of a nanosecond and

representing the delay from the pulse start time;

Clock adds duty cycle and generation end time:

■ DC – duty cycle in seconds with the resolution of a nanosecond;

■ TE – clock generation end time in seconds with the resolution of a nanosecond

and with an absolute limit of one day and representing delay of this occurrence

from the time origin.

Page 41 of 76

NDS provides templates for each type of time event. Each required event template

should be instantiated separately.

Example of FTE instantiation from st.cmd

Loading FTE's events

EVENT_NAME - human readable event name

EVENT_ID - event identification

TERMINAL_ID - event's terminal identification

dbLoadRecords "db/_APPNAME_FTE.template", "PREFIX=_APPNAME_,

ASYN_PORT=$(PORT), ASYN_ADDR=0, EVENT_NAME=FTE, EVENT_ID=1,

TERMINAL_ID=PXITRG1"

NDS implements following classes to support event records for time events:

■ TimeEvent (ndsTimeEvent.h)

■ Pulse (ndsPulse.h)

■ Clock (ndsClock.h)

Concrete NDS device support should override methods of these classes to implement

the event’s functionality.

Page 42 of 76

13 NDS TOOLS

13.1 epicsMutex and AsynDriver Locker

Supported from: v.2.2.3

NDS provides lockers for epicsMutex and asynDriver which will automatically

unlock resources when the processor goes out of its defined scope (RAII).

Page 43 of 76

14 NDS TASKS

NDS provides a common interface for asynchronous tasks (nds::BaseTask). This

allows managing tasks in a single way. All asynchronous tasks are registered within

an NDS task manager. The task manager takes care of tasks cancellation when an exit

is requested. The task manager requires unique task names. If a task name is not

unique, then this is treated as a critical error and the task manager blocks IOC

execution.

The task manager provides a name generator to help device integrators create unique

names.

The BaseTask interface gives 2 main functions to manage tasks: start() and

cancel(). The first starts task execution, while the second cancels task execution.

BaseTask has an internal state machine to prevent a task’s double starting or double

cancelling, so start() and cancel() methods cannot be overwritten directly.

The interface includes 2 private functions to override startPrv() and

cancelPrv().

BaseTask sets a task’s state machine to ndsThreadStopping and

ndsThreadStarting. Each concrete task should transfer task to final states

ndsThreadStopped and ndsThreadStarted, to provide normal task processing.

14.1 nds::TaskService

[NDS v.2.3, ndsTaskService.h]

nds::TaskService is a service class for NDS tasks. The main goal of this class is to

simplify the cancellation of tasks. There are 4 main operations which could be

performed on a TaskService object:

 Request task cancelling:

void cancel()

 Check if task was cancelled:

volatile bool isCancelled()

 Initiate sleep procedure:

WaitStatus sleep(double seconds)

The task service provides a special sleep procedure which could be interrupted by a

cancel request. Only this sleep procedure should be used in a task’s handlers to allow

normal cancellation process.

The sleep procedure can have following statuses:

o ndsWaitStatusEvent means that a cancel event was received.

o ndsWaitStatusError means that the task was not able to start the wait

procedure.

o ndsWaitStatusTimeout is returned when the sleep timeout expires.

 Clean cancelled status:

Page 44 of 76

void restore()

Cleaning of a cancelled status will not restart the task.

14.2 nds::ThreadTask Class

[NDS v.2.3, ndsThreadTask.h]

This is a simple thread task which provides an easy method of registering a thread

handler. A thread handler will be run in a separate thread once. When a thread handler

returns, ThreadTask stops.

ThreadTask could be created through the factory method:

 static ThreadTask* create(const std::string& name,

 unsigned int stackSize,

 unsigned int priority,

 TaskBody body);

TaskBody is a task handler which has following signature:

void (*)(TaskServiceBase& service)

The thread task could be restarted. For each start of the task, a new instance of the

EPICS thread will be created.

For example:

#include <ndsThreadTask.h>

class ExDevice: public nds::Device

{

private:

 nds::ThreadTask *resetTask;

public:

…

 /// emulation of resetting process

 ndsStatus resetProcess(nds::TaskServiceBase &service);

}

ExDevice::ExDevice(const std::string& name):nds::Device(name)

{

…

 resetTask = nds::ThreadTask::create(

nds::TaskManager::generateName("Resetting"),

 epicsThreadGetStackSize(epicsThreadStackSmall),

 epicsThreadPriorityMedium,

 boost::bind(&ExDevice::resetProcess, this, _1)

);

}

ndsStatus ExDevice::onReset(nds::DeviceStates, nds::DeviceStates)

{

 NDS_INF("Start resetting.");

 resetTask->start();

Page 45 of 76

 return ndsSuccess;

}

ndsStatus ExDevice::resetProcess(nds::TaskServiceBase &service)

{

 doCallbacksMessage("RESET",0,"Resetting in progress.");

 service.sleep(5.0);

 doCallbacksMessage("RESET",0,"Resetting complete.");

 getCurrentStateObj()->requestState(this,

nds::DEVICE_STATE_ON);

 return ndsSuccess;

}

14.3 nds::PeriodicTask Class

[NDS v.2.3, ndsPeriodicTask.h]

nds::PeriodicTask is a task which repeats execution of the task body with the

requested period.

An instance of the nds::PeriodicTask could be created through the fabric method:

 static PeriodicTask* create(const std::string& name,

 unsigned int stackSize,

 unsigned int priority,

 TaskBody);

TaskBody is a task handler which has the following signature:

void (*)(TaskServiceBase& service)

The task could be cancelled and restarted again.

14.4 nds::PollingTask Class

[NDS v.2.3, ndsPollingTask.h]

nds::PollingTask provides a polling core which correctly handles interruptions.

The polling task could be created through the factory method create(), which has

the following functionality:

 static PollingTask* create(

 const std::string& name,

 unsigned int priority,

 unsigned int stackSize);

Where:

■ name – is a task name.

■ priority – epicsThread priority.

■ stackSize – epicsthread stack size.

A file descriptor’s registration is done through the following method:

Page 46 of 76

ndsStatus addFile(int fileFd, FileEventHandler handler, uint32_t

events = EPOLLIN);

Where:

■ fileFd is a valid file descriptor.

■ handler is a callback method to handle event on this file descriptor.

The handler will be called on an event on this file descriptor. The developer should

handle all possible events which could occur. nds::PollingThread does not handle any

file events, it just calls the handler.

The polling task handler has following signature:

void (*)(TaskServiceBase& service, const struct epoll_event&

event);

The handler receives a service object to serve the handler’s needs and an event object

which the epoll_wait function returns.

The polling task could be restarted. Each time the PollingTask starts, a new instance

of the thread will be created. Note: the polling task frees a list of file handlers on

cancelling, so before a new iteration file descriptors should be reregistered within a

polling task. It allows for the closing of file handlers when a polling task is cancelled.

14.4.1 nds::PollingTask Example

This example describes channel processing for a device which has separate device

files for each channel. The channel’s active state is PROCESSING. All state handlers

mentioned relate to the PROCESSING state. A simplified activity list is:

1. Open device file from onRequestState handler. If device file cannot be opened

then the handler should return ndsError which means channel cannot be

processed.

2. Add files and starting polling from onEnter handler.

3. Cancelling polling from onLeave handler. Close files.

For example:

#include "ndsPeriodicTask.h"

#include "ndsPollingTask.h"

class ExADIOChannel: public nds::ADIOChannel

{

protected:

…

 nds::PeriodicTask* taskPeriodic;

 nds::PollingTask* taskPolling;

public:

 ...

 /// Concrete channel specific member

 void processSamplingBody(nds::TaskServiceBase& service);

 /// Concrete channel specific member

 void processReadBody(nds::TaskServiceBase& service);

Page 47 of 76

}

ExADIOChannel::ExADIOChannel(…)

{

 …

 if (!_isOutput)

 {

 snprintf(timerName, sizeof(timerName), "pipe-reader-%s",

fileName);

 taskPolling = nds::PollingTask::create(

 timerName,

 epicsThreadGetStackSize(epicsThreadStackSmall),

 epicsThreadPriorityMedium);

 }

 snprintf(timerName, sizeof(timerName), "pipe-sampler-%s",

fileName);

 taskPeriodic = nds::PeriodicTask::create(

 timerName,

 epicsThreadGetStackSize(epicsThreadStackSmall),

 epicsThreadPriorityMedium,

 boost::bind(

 &ExADIOChannel::processSamplingBody,

 this,

 _1)

);

}

ndsStatus ExADIOChannel::onSwitchOn(nds::ChannelStates prevState,

 nds::ChannelStates currState)

{

…

 // Starting periodic task

 if (taskPeriodic)

 {

 taskPeriodic->start(epicsTime::getCurrent()+10,

clockPeriod()/1.0e9);

 }else

 NDS_DBG("Periodic task is not defined.");

 if (!_isOutput)

 {

 if(taskPolling)

 {

 // Opening file

 if(fileFD == -1)

 {

 fileFD = open(fileName, O_RDONLY | O_NONBLOCK);

 NDS_DBG("Openning file: %s fd: %d", fileName,

fileFD);

 if(fileFD == -1) {

 NDS_ERR("Can't open '%s' for reading.",

fileName);

 return ndsError;

 }

 }

Page 48 of 76

 // File descriptor registration within a polling

thread

 if(taskPolling->addFile(fileFD,

boost::bind(&ExADIOChannel::processReadBody, this, _1, _2)) ==

ndsSuccess)

 {

 // Start polling

 taskPolling->start();

 }

 else

 return ndsError;

 }else

 NDS_DBG("Polling task is not defined.");

 }

 return ndsSuccess;

}

ndsStatus ExADIOChannel::stopProcessing(nds::ChannelStates

prevState,

 nds::ChannelStates currState)

{

 NDS_INF("ExADIOChannel::stopProcessing");

 eventTimer->cancel();

 if (!_isOutput)

 {

 // Cancelling polling task

 if(taskPolling)

 {

 taskPolling->cancel();

 }else

 NDS_DBG("Polling task is not defined.");

 }

 // Cancelling periodic task

 if (taskPeriodic)

 {

 taskPeriodic->cancel();

 }else

 NDS_DBG("Periodic task is not defined.");

 return closeFiles();

}

14.5 nds::Timer Class

[NDS v.2.2.3, ndsTimer.h]

This is a wrapper over the EPICS Timer class, which synchronizes the timer interface

with the nds::BaseTask. All nds::Timer objects are registered within the

nds::TaskManager and will be automatically cancelled during the exit procedure.

TimerPtr create(const std::string &name, OnTimeHandler p);

TimerPtr create(const std::string &name, epicsTimerQueue &queue,

OnTimeHandler p);

Page 49 of 76

Where:

■ name – is a timer name, unique within IOC.

■ OnTimerHandler has the following signature:

epicsTimerNotify::expireStatus (*)(TaskService& service, const epicsT

Page 50 of 76

15 DEFINE DRIVER SPECIFIC IOC FUNCTION

Supported from: v.2.2.2

The nds::Manager has the findDevice member function which can be used to get a

pointer to a nds::Device instance. It allows for the definition of device specific

functions which can be accessible from the IOC.

/**

 * @param portName - the device port name which was used to create

device by nds::createDevice.

 * @param device -

 * @return ndsSuccess - if device found

 * @return ndsError - if device is not found

 */

ndsStatus findDevice(const char* portName, Device** device);

For example:

int configureDevice (const char* devicePort, int param)

{

 nds::Device* ptr;

nds::Manager::getInstance().findDevice(devicePort, *ptr);

// Device specific function (not implemented in NDS)

ptr->setParam(param)

}

Page 51 of 76

16 SOFTWARE USER MANUAL REVIEW

CHECKLIST

[Print this checklist separately to be included in the SUM Review Report]

Review Of Software User Manual

Project Name [Software Project Title]

Document Software User Manual [IDM Link]

Reviewer [V&V Team]

Criteria Yes/No/ NA

Document Standard

1 Were standards/guidelines and naming conventions established for the document?

1a Does the document format conform to the specified standard/guideline?

1b Are the standards and naming conventions established followed throughout the document?

Operations Overview

2 Does the document contain a section that describes a high level purpose and main capabilities

of the software, and its overall operation in terms of the following:

2a Function?

2b Options?

2c System performance considerations (i.e., restrictions & limitations)?

Detailed Description of Functions

3 Is there a detailed description of the overall subsystem(s) or major functional capability?

4 Have assumptions and restrictions to processing been addressed?

5 Have high-level diagrams of subsystems, including interfaces, data flow, and communications

for each processing mode been provided?

6 Is a high-level description of input and output provided?

7 Have detailed descriptions of processing keyed to operator-specified input and actions in

terms of points of control, functions performed, and results obtained (both normal and

abnormal, i.e., error processing and recovery) been addressed?

8 Have samples of displays in the order in which they are generated been provided?

9 Have sample hardcopy output in the order in which they are produced been provided?

10 Have numbered messages with explanations of system’s and user’s actions been provided?

Page 52 of 76

Criteria Yes/No/ NA

11 Have descriptions of inputs from any other sources other than users that may affect its

interface with the user been addressed?

Installation and Initialization

12 Does the document explain in detail the procedures for installing, tailoring, and initiating the

software, including:

12a Equipment set-up?

12b Power-on and power-off?

12c Bootstrap and load?

12d Initiation commands?

12e Interrupt/recovery/restart?

12f Initialization of files, variables, or other data?

12g Tailoring, reconfiguration, adaptation?

12h Re-initialization after failure?

Startup and Termination

13 Does the document describe how to start and terminate operations normally, and how to

determine whether normal termination has occurred?

14 Does the document include procedures to address:

14a Trouble indications and corrective actions?

14b On-line interventions?

14c Trap recovery?

14d Operating communications?

14e Fault isolation techniques?

14f Conditions requiring software abort or equipment shut-down?

15 Does the document include procedures for restarting after both normal and abnormal

termination?

16 If recovery procedures are required for restarting after abnormal termination, do they

address:

16a Check points?

16b Collection of failures data?

16c Restoring files?

Page 53 of 76

Criteria Yes/No/ NA

16d Restoring devices to operational mode?

Error and Warning Messages

17 Does the document contain a list and explanations for each possible error condition and

associated messages that may be encountered along with the corresponding corrective actions to

be taken?

18 Does the document identify agency or point-of-contacts for assistance?

Recovery Steps

19 Does the document explain recovery procedures the user may employ?

Page 54 of 76

Appendix A REFERENCE

This appendix lists all configuration parameters that a nominal device can provide.

The first section lists the configuration parameters related to a Channel and the second section lists the configuration parameters related to a

device.

The PV suffix column defines the suffix of the EPICS process variable name. If a suffix is given in parentheses – e.g., (WF) – it is actually blank,

but is stated in the table just for purpose of cross-referencing throughout this document.

The Record type column specifies the record type in the EPICS database.

Function column specifies the name of the function within the driver which is called when the value of the record is set. By our convention, this

name corresponds to the string that is used in the INP or OUT field of the record. For example, the EPICS database would have the following

definition for the value of these fields:

field(INP, "@asyn($(port),$(addr)) function")

Not all devices are required to support all of these functions and configuration parameters. For those that are not optional, the Description column

explicitly states [REQUIRED]. Also, if some configuration parameters only apply to a certain kind of channel, the abbreviations of channel types

are listed in the brackets, e.g., [REQUIRED, AI, C] means that the parameter is required for all analog input and camera channels.

Page 55 of 76

A.1. Channel Functions

Function
PV

suffix
Record type Description

Buffer (WF) waveform

[REQUIRED: DO; OPTIONAL: AO] Output channels: the contents of the buffer to

output to the channel. The values are subject to conversion from engineering units to raw

units.

BufferSize BUFS longout
[REQUIRED: AI, DI, DIO, C] Size of the buffer. Used to set the NELM field of the (WF)

record.

getBandwidth BW ai [AI] Get the bandwidth of an analog input channel.

getBuffer (WF) waveform

[REQUIRED: AI, DI, DIO, C] Input channels: retrieve the next buffer. The NORD field

specifies how many samples are read. The NELM field specifies the maximal number of

samples.

getImpedance IMPD ai [AI] Get the impedance of the analog input channel.

getMeasuredOffset MOFS ai [AI] Return the measured offset of an analog input channel.

getSamplesPerPixel SPP longin [C] Number of samples per pixel.

Quality Q ai [AI] Quality of the measurements on the channel (e.g., measure of signal-to-noise).

readFFT FFT
waveform

(double type)
[AI] The Fourier transform of the acquired signal.

receiveMessage MSGR stringin
Retrieve the last message from the device. The message is of the format

<message> <correlation-id>

Page 56 of 76

Function
PV

suffix
Record type Description

sendMessage MSGS stringout

Send a message to the device. Message string has the format:

<message> [<correlation-id> [<param> [<param>] …]]

where <message> is the type of the message to convey to the device. <correlation-id> is

used to correlate a response message with the request message. A number of parameters

can then be given. Separator is a space. If parameter value contains a space, the parameter

needs to be enclosed in quotes.

Standardized messages are:

STOP Stop any action that is in progress at the device (e.g., test execution).

TEST-QUICK Perform a quick self-test of the device. TEST-FULL Perform an

intensive self-test of the device. The test checks all the test-points defined

by the device, therefore it may take a longer time to complete.

If during a test, problems are found, the state of the device (STAT record) is set to the

ERROR or DEFUNCT state. More information can be found in the IOC error

log.

setChannelState STAT mbbo

[REQUIRED] Set the state of the channel. The following values are possible:

0 OFF The channel is disabled. In this state, no operation can be performed on the

channel, and the state must first be set to ON.

1 ON The channel is ready to be configured. This is the initial state of the channel.

2 RESET Reset the channel. When set, the channel will be configured to its default

configuration. When reconfigured, its state will be set to ON.

3 BUSY Channel is busy (acquiring analog input or frames, or generating output). To

stop the activity, state can be set to ON.

4 ERROR A channel-level error occurred. The channel needs to be reset.

5 DEFUNCT Hardware malfunction of the channel. Not even a reset of the channel or

power-cycle of the device would help. Channel needs to be re-cabled or

replaced. If any channel is DEFUNCT, the device state is also set to DEFUNCT.

Page 57 of 76

Function
PV

suffix
Record type Description

setClockFrequency CLKF ao

[AI, AO, DI, DO, DIO, C] Set the frequency of the internal clock selected with CLKSRC

record. The frequency is specified in Hz.

For camera channels, this parameter specifies the number of frames per second.

If a clock source other than an internal clock source is selected, or if the selected clock

source does not support the requested frequency, the alarm severity (SEVR field) of this

record is set to MINOR and the alarm state (STAT) is set to WRITE. If internal clock source

is selected, the frequency is set to the nearest smaller frequency.

setClockMultiplier CLKM ao

[AI, AO, DI, DO, DIO, C] Set the clock multiplier of the external clock selected with

CLKSRC record. The multiplier is given as a factor, e.g., 1.0 to keep the external source’s

frequency, 0.25 to divide it by 4, and 4 to multiply it with 4, etc.

If a clock source other than an external clock source is selected, or if the selected clock

source does not support the requested multiplier factor, the alarm severity (SEVR field) of

this record is set to MINOR and the alarm state (STAT) is set to WRITE. If external clock

source is selected, the multiplier is set to the nearest smaller multiplier.

Page 58 of 76

Function
PV

suffix
Record type Description

setClockSource CLKS mbbo

[AI, AO, DI, DO, DIO, C] Set the clock source for sampling (input channel), frame

acquisition (camera) or clocking digital-to-analog converter (output channel).

Possible values for the clock source are:

0 INT Internal clock. [REQUIRED]

1 INT1 Second internal clock. Optional.

2 INT2 Third internal clock. Optional.

3 INT3 Fourth internal clock. Optional.

4 TCN External clock. Usually from the timing module.

5 EXT1 Second external clock. Optional.

6 EXT2 Third external clock. Optional.

7 EXT3 Fourth external clock. Optional.

If the channel does not support a particular clock source, the alarm severity (SEVR field) of

this record is set to MINOR, the alarm state (STAT) is set to WRITE, and the clock source

remains unaffected.

setConversion CVT
waveform

(double type)

[AI, AO] Define conversion from raw values to engineering values as described in section

Error! Reference source not found.. Conversion is defined as a segmented cubic spline.

aveform array consists of five-tuples, whose elements are the start of the segment,

followed by the four cubic spline coefficients.

If an empty array is given, conversion is performed according to the LINR, EGUF and

EGUL fields of the IN and OUT records.

setCoupling ACDC bo

[AI] Set the coupling (AC or DC) of the analog input channel. Values are:

0 AC Coupling for alternating current.

1 DC Coupling for direct current.

Page 59 of 76

Function
PV

suffix
Record type Description

setDecimationFactor DECF ao

[AI, AO, DI, DO, DIO, C] Set decimation factor.

For input channels, only every DECF-th sample (or frame) will be sampled.

For output channels outputting a waveform, only every DECF-th sample will be output.

setDecimationOffset DECO ao [AI, AO, DI, DO, DIO, C] Specify the index of the first sample that is not decimated.

setDifferential DIFF bo [AI] Set the type of input: differential or single-ended.

setDIODirection DIR bo

[REQUIRED: DIO] For general purpose input/output digital channels, specifies whether

the channel is an input or an output channel. Values are:

0 IN Input channel.

1 OUT Output channel.

setFFTOverlap FFTO ao
[AI] Configure the amount of overlap between consecutive frames for the Fourier

transform.

setFFTSize FFTN ao [AI] Configure size of the frame for the Fourier transform.

setFFTSmoothing FFTS ao [AI] Configure the smoothing factor for averaging the Fourier transform.

setFFTWindow FFTW mbbo

[AI] Select the windowing function for the Fourier transform. Possible values are:

0 NONE No window (i.e., window[i] = 1).
1 BARLETT
2 BLACKMAN

3 FLATTOP
4 HANN
5 HAMMING

6 TUKEY
7 WELCH

Page 60 of 76

Function
PV

suffix
Record type Description

setFilter FILT
waveform

(double type)

[AI] Set the filter for the analog input signal as described in section Error! Reference

ource not found.. If an empty array is given, the SMOO field of the IN record is used.

setGain GAIN ao

[AI, AO] Gain of a channel.

For analog input channels, this is the amplification factor by which the signal is amplified

before it is digitized.

For analog output channels, this is the amplification factor by which the signal is amplified

just after it has been converted to analog.

If the channel does not support a particular gain factor, the alarm severity (SEVR field) of

this record is set to MINOR and the alarm state (STAT) is set to WRITE. The gain is set to

the nearest supported smaller value.

setGround GND bo [AI] Specify whether or not to ground the input.

setHeight HGHT longin [C] Requested height of the camera image.

setImageType IMGT mbbo

[C] Type of the image’s raw format.

0 GRAYSCALE Grayscale (implies SPP=1).

1 RGB Red-green-blue (implies SPP=3).

2 BGR Blue-green-red (implies SPP=3).

3 RGBG Bayer format (implies SPP=4).

4 GRGB Bayer format (implies SPP=4).

5 RGGB Bayer format (implies SPP=4).

Page 61 of 76

Function
PV

suffix
Record type Description

setOffset OFS ao

[AI, AO] Offset voltage of a channel.

For analog input channels, the offset voltage is subtracted before it is amplified.

For analog output channels, the offset voltage is added after it is amplified.

If the channel does not support a particular offset, the alarm severity (SEVR field) of this

record is set to MINOR and the alarm state (STAT) is set to WRITE. The offset is set to the

nearest supported smaller value.

setOriginX ORGX longin [C] X coordinate of the image’s upper-left corner (for cropping).

setOriginY ORGY longin [C] Y coordinate of the image’s upper-left corner (for cropping).

setResolution RES longin
[AI, C] Resolution of the channel (number of bits per sample). For camera, number of bits

per color.

setSignalAmplitude SGNA ao
[AO] Amplitude of the output signal, e.g., the sine signal without offset would range from

–SGNA to +SGNA. Amplitude is specified in terms of the output’s engineering units.

setSignalDutyCycle SGND ao
[AO] Set the duty cycle of the output signal. Duty cycle is expressed as a fraction of the

whole cycle when the output is in the high state (pulse train) or rising (sawtooth).

setSignalFrequency SGNF ao
[AO] Frequency of those types of signal that are periodic. See the SGNT record for

specification of the signal type. Frequency is specified in Hz as a floating point number.

setSignalOffset SGNO ao
[AO] Offset to add to the output signal, e.g., the sine signal would range from SGNO-

SGNA to SGNO+SGNA. Offset is specified in terms of the output’s engineering units.

setSignalPhase SGNP ao
[AO] Phase of the generated output signal. Phase is relative to the epoch of the time base

(e.g., the TCN).

Page 62 of 76

Function
PV

suffix
Record type Description

setSignalType SGNT mbbo

[AO] Set the type of output signal that is generated by the output channel. It can be one of

the following values:

0 WAVEFORM Waveform as defined in WF record.

1 SPLINE Spline (piecewise-cubic function) as defined in SPLN record

2 SIN Sine curve (amplitude SGNA, offset SGNO, frequency SGNF, phase

SGNP).

3 PULSE Pulse train (amplitude SGNA, offset SGNO, frequency SGNF, phase

SGNP, duty cycle SGNP).

4 SAWTOOTH Sawtooth output (amplitude SGNA, offset SGNO, frequency SGNF,

phase SGNP, rising for fraction SGNP, falling for fraction 1-SGNP).

setTriggerChannel TRGC stringout
[AI, AO, DI, DO, DIO, C] Set another channel as the trigger. Please refer to section

Error! Reference source not found. for syntax of this record.

setTriggerDelay TRGD ao
[AI, AO, DI, DO, DIO, C] Set the delay for the trigger. The delay is given as the number

of seconds past the trigger event.

setTriggerRepeat TRGR longout [AI, AO, DI, DO, DIO, C] Set the number of times that the trigger should be triggered.

setWidth WDTH longin [C] Requested width of the camera image.

Spline SPLN waveform
[AO] Description of a spline to generate on the output channel (see section Error!

eference source not found.).

trigger TRG stringout [AI, AO, DI, DO, DIO, C] Trigger data acquisition immediately or at specified time.

Value OUT ao, bo
[AO, DO] Set a value of the output channel. The value is subject to conversion from

engineering units to raw units.

Page 63 of 76

Function
PV

suffix
Record type Description

ValueFloat64 IN ai, bi
[AI, DI, DIO] Read the current value of the channel. The value is subject to filtering and

conversion from raw units to engineering units.

A.2. Device Functions

Function
PV

suffix
Record type Description

(getState) (STAT) mbbi

[REQUIRED] The state of the device. The following values are possible:

0 OFF The device is offline – even powered off, if possible by the hardware. To

perform power cycling, first set the device state to OFF, and then back toON.

1 ON The device is ready to perform. Note: setting the state to ON might not be

immediate. If device initialization is not immediate, the device will pass

through the INIT state.

2 RESET Reset the device. When set, a soft reset of the device will be performed. If

device takes longer time to reset, it might pass through the INIT state.

3 INIT The device is initializing. When initialization is complete, it will go to the

ON state. All settings will be reset to initial/default values. The device is in

the INIT state also when it is temporarily unavailable e.g., due to a

firmware update that is in progress. It is not possible to explicitly set the PV

to this value.

4 ERROR A device-level error occurred. The device needs to be reset.

5 DEFUNCT Hardware malfunction. Not even a reset/power-cycle would help and the

device needs to be serviced or replaced. This state can also be a consequence

of a broken firmware update.

Page 64 of 76

Function
PV

suffix
Record type Description

In the ERROR and DEFUNCT states, alarm severity (SEVR field) is set to MAJOR and

alarm state (STAT) is set to STATE. Additional information about the error can be found

in the IOC’s error log.

getModel

getSerial

getHardwareRevision

getFirmwareVersion

getSoftwareVersion

IMDL

ISN

IHW

IFW

ISW

stringin

[REQUIRED: model and software info] Retrieve information about the device.

IMDL is the model of the device. ISN is the device serial number. IHW is the hardware

revision ID. IFW is the firmware version number. ISW is the software (device driver)

version number.

Note for device driver implementers: rather than overriding the get* functions, set

the modelName, serialNumber, hardwareVersion, firmwareVersion and

softwareVersion fields of the NDSDevice structure during driver initialization.

receiveMessage MSGR stringin
Retrieve the last message from the device. The message is of the format

<message> <correlation-id>

sendMessage MSGS stringout

Send a message to the device. Message string has the format:

<message> [<correlation-id> [<param> [<param>] …]]

where <message> is the type of the message to convey to the device. <correlation-id> is

used to correlate a response message with the request message. A number of parameters

can then be given. Separator is a space. If parameter value contains a space, the

parameter needs to be enclosed in quotes.

Standardized messages are:

STOP Stop any action that is in progress at the device (e.g., test execution).

TEST-QUICK Perform a quick self-test of the device. TEST-FULL Perform an

intensive self-test of the device. The test checks all the test-points

defined by the device, therefore it may take a longer time to complete.

Page 65 of 76

Function
PV

suffix
Record type Description

If during a test, problems are found, the state of the device (STAT record) is set to the

ERROR or DEFUNCT state. More information can be found in the IOC error

log.

setClockFrequency CLKF ao

[AI, AO, DI, DO, DIO, C] Set the frequency of the internal clock selected with

CLKSRC record. The frequency is specified in Hz.

For camera channels, this parameter specifies the number of frames per second.

If a clock source other than an internal clock source is selected, or if the selected clock

source does not support the requested frequency, the alarm severity (SEVR field) of this

record is set to MINOR and the alarm state (STAT) is set to WRITE. If internal clock

source is selected, the frequency is set to the nearest smaller frequency.

setEmulation EMUL bo
Allow (TRUE) or disallow (FALSE) software emulation of functions that are not

supported by hardware.

Page 66 of 76

Appendix B LIST OF DOCALLBACKS FUNCTIONS

This section includes a list of the doCallbacks functions for all possible EPICS type

variations.

 /**

 * Event dispatching functions.

 * Theses functions should be used by the user to notify asyn

driver when

 * data is ready to be handled.

 *

 * Majority of the functions has interruptId and port address

parameters.

 * These parameters are used to select correspondent handler

to process data.

 * InterruptId is stored by the handler registering function

(last parameter).

 * Asyn address is stored during initialization in protected

field _portAddr

 */

 /**

 * asynInt8Array interrupt dispatching function.

 * Dispatch Int8 array value to registered handlers.

 * \param value is a new data (array)

 * \param nElements is a number of elements in the array

 * \param reason is an interrupId of the reason code to

process new data

 * \param addr is a port address to select correct value

 * \param timestamp is a timestamp value to update record

process time

 * \return It returns status of the operation. If operation

success it returns ndsSuccess vice versa ndsError

 *

 */

 ndsStatus doCallbacksInt8Array(epicsInt8 *value, size_t

nElements,

 int reason, int addr);

 ndsStatus doCallbacksInt8Array(epicsInt8 *value, size_t

nElements,

 int reason, int addr, epicsTimeStamp timestamp);

 ndsStatus doCallbacksInt8Array(epicsInt8 *value, size_t

nElements,

 int reason);

 ndsStatus doCallbacksInt8Array(epicsInt8 *value, size_t

nElements,

 int reason, epicsTimeStamp timestamp);

 /**

 * asynInt16Array interrupt dispatching functions

 * Dispatch Int16 array value to registered handlers.

 */

 ndsStatus doCallbacksInt16Array(epicsInt16 *value, size_t

nElements,

 int reason, int addr);

 ndsStatus doCallbacksInt16Array(epicsInt16 *value, size_t

nElements,

 int reason, int addr, epicsTimeStamp timestamp);

 ndsStatus doCallbacksInt16Array(epicsInt16 *value, size_t

nElements,

Page 67 of 76

 int reason);

 ndsStatus doCallbacksInt16Array(epicsInt16 *value, size_t

nElements,

 int reason, epicsTimeStamp timestamp);

 /**

 * asynInt32Array interrupt dispatching function

 * Dispatch Int32 array value to registered handlers.

 */

 ndsStatus doCallbacksInt32Array(epicsInt32 *value, size_t

nElements,

 int reason, int addr);

 ndsStatus doCallbacksInt32Array(epicsInt32 *value, size_t

nElements,

 int reason, int addr, epicsTimeStamp timestamp);

 ndsStatus doCallbacksInt32Array(epicsInt32 *value, size_t

nElements,

 int reason);

 ndsStatus doCallbacksInt32Array(epicsInt32 *value, size_t

nElements,

 int reason, epicsTimeStamp timestamp);

 /**

 * asynFloat32Array interrupt dispatching function

 * Dispatch Float32 array value to registered handlers.

 */

 ndsStatus doCallbacksFloat32Array(epicsFloat32 *value,

 size_t nElements, int reason, int addr);

 ndsStatus doCallbacksFloat32Array(epicsFloat32 *value,

 size_t nElements, int reason, int addr,

epicsTimeStamp timestamp);

 ndsStatus doCallbacksFloat32Array(epicsFloat32 *value,

 size_t nElements, int reason);

 ndsStatus doCallbacksFloat32Array(epicsFloat32 *value,

 size_t nElements, int reason, epicsTimeStamp

timestamp);

 /**

 * asynFlaot64Array interrupt dispatching function

 * Dispatch Float64 array value to registered handlers.

 */

 ndsStatus doCallbacksFloat64Array(epicsFloat64 *value,

 size_t nElements, int reason, int addr);

 ndsStatus doCallbacksFloat64Array(epicsFloat64 *value,

 size_t nElements, int reason, int addr,

epicsTimeStamp timestamp);

 ndsStatus doCallbacksFloat64Array(epicsFloat64 *value,

 size_t nElements, int reason);

 ndsStatus doCallbacksFloat64Array(epicsFloat64 *value,

 size_t nElements, int reason, epicsTimeStamp

timestamp);

 /**

 * GenericPointer interrupt dispatching function

 * \param pointer is an new data

 * \param reason is a reason code (numeric) to process new

data

 * \param addr is a port address to select handler for the

reason

 * \return It returns status of the operation

Page 68 of 76

 *

 * Reason and port address are used to select appropriate

handler to process data.

 */

 ndsStatus doCallbacksGenericPointer(void *pointer, int

reason, int addr);

 ndsStatus doCallbacksGenericPointer(void *pointer, int

reason);

 /**

 * asynInt32 interrupt dispatching function

 * Dispatch Int32 value to registered handlers.

 */

 ndsStatus doCallbacksInt32(epicsInt32 value, int reason, int

addr);

 ndsStatus doCallbacksInt32(epicsInt32 value, int reason, int

addr, epicsTimeStamp timestamp);

 ndsStatus doCallbacksInt32(epicsInt32 value, int reason);

 ndsStatus doCallbacksInt32(epicsInt32 value, int reason,

epicsTimeStamp timestamp);

 /**

 * asynFloat64 interrupt dispatching function

 * Dispatch Flaot64 value to registered handlers.

 */

 ndsStatus doCallbacksFloat64(epicsFloat64 value, int reason,

int addr);

 ndsStatus doCallbacksFloat64(epicsFloat64 value, int reason,

int addr, epicsTimeStamp timestamp);

 ndsStatus doCallbacksFloat64(epicsFloat64 value, int reason);

 ndsStatus doCallbacksFloat64(epicsFloat64 value, int reason,

epicsTimeStamp timestamp);

 /**

 * asynOctet interrupt dispatching function.

 * Dispatch Octet value to registered handlers.

 */

 ndsStatus doCallbacksOctet(char *data, size_t numchars, int

eomReason,

 int reason, int addr);

 ndsStatus doCallbacksOctet(char *data, size_t numchars, int

eomReason,

 int reason, int addr, epicsTimeStamp timestamp);

 ndsStatus doCallbacksOctet(char *data, size_t numchars, int

eomReason,

 int reason);

 ndsStatus doCallbacksOctet(char *data, size_t numchars, int

eomReason,

 int reason, epicsTimeStamp timestamp);

 ndsStatus doCallbacksOctet(const std::string &data, int

eomReason,

 int reason, int addr);

 ndsStatus doCallbacksOctet(const std::string &data, int

eomReason,

 int reason, int addr, epicsTimeStamp

timestamp);

 ndsStatus doCallbacksOctet(const std::string &data, int

eomReason,

 int reason);

Page 69 of 76

 ndsStatus doCallbacksOctet(const std::string &data, int

eomReason,

 int reason, epicsTimeStamp timestamp);

 ndsStatus doCallbacksOctet(const std::string &data, int

reason);

 ndsStatus doCallbacksOctet(const std::string &data, int

reason, epicsTimeStamp timestamp);

 ndsStatus doCallbacksUInt32Digital(epicsUInt32 value,

epicsUInt32 mask, int reason, int addr);

 ndsStatus doCallbacksUInt32Digital(epicsUInt32 value,

epicsUInt32 mask, int reason, int addr, epicsTimeStamp timestamp);

 ndsStatus doCallbacksUInt32Digital(epicsUInt32 value,

epicsUInt32 mask, int reason);

 ndsStatus doCallbacksUInt32Digital(epicsUInt32 value,

epicsUInt32 mask, int reason, epicsTimeStamp timestamp);

Page 70 of 76

Appendix C AREADETECTOR SUPPORT

AreaDetector is an EPCIS module which describes the standard interface for the area

detectors (cameras). areaDetector supports plugins for image handling: region-of-

interest (ROI), various data format exports (JPEG, TIFF, STAT, etc.).

NDS provides areaDetector plugin support: i.e., an areaDetector plugins can be

connected to an NDS image channel. This is shown in Figure 12, where

areaDetector’s ROI and TIFF plugins make use of an image captured by an NDS

image channel.

Figure 12: Run-time data flow involving AreaDetector plugins.

This is achieved by NDS also exposing areaDetector’s NDArray interface for every

NDS image channel. NDArrayChannel class provides NDArray interface for the

areaDetector plugins.

Figure 13: NDS image channel class hierarchy.

Image buffer is treated as being in a raw format. NDS will convert the data to

NDArray and publish it to all registered plugins as shown in activity diagram in

Figure 14.

 cmp areaDetector

NDS

NDArrayChannel
NDArray

NDArray
ROI

NDArray

NDArray
TIFF

NDArray

«flow»

«flow»

 class NDArrayChannel

BaseChannel

Channel

ImageChannel

NDArrayChannel

Page 71 of 76

Figure 14: Activity diagram for publishing images to AreaDetector.

C.1. Installing AreaDetector

The areaDetector module is required to build NDS with areaDetector plugins’

support.

The following modules are required that are not (yet) part of CODAC.

■ busy: version 1.4

http://www.aps.anl.gov/bcda/synApps/busy/busy.html

■ sscan: version 2.8.1

http://www.aps.anl.gov/bcda/synApps/sscan/sscan.html

■ calc: version 3.0

http://www.aps.anl.gov/bcda/synApps/calc/calc.html

■ areaDetector: version 1.8

http://cars9.uchicago.edu/software/epics/areaDetector.html

These modules are needed as they are dependencies of areaDetector. They should be

built using standard EPICS module build procedure, in the same order as listed above.

You will need to edit configure/RELEASE files to specify the following locations

of EPICS base and modules where they are due:

EPICS_BASE=/opt/codac/epics/base

EPICS_MODULES=/opt/codac/epics/modules

ASYN=$(EPICS_MODULES)/asyn

SSCAN=$(EPICS_MODULES)/sscan

BUSY=$(EPICS_MODULES)/busy

CALC=$(EPICS_MODULES)/calc

AUTOSAVE=$(EPICS_MODULES)/autosave

AREA_DETECTOR=$(EPICS_MODULES)/areaDetector

 act ImageProcessing

Capture image

Conv ert image

Publish image

ActivityFinal

ActivityInitial

http://www.aps.anl.gov/bcda/synApps/busy/busy.html
http://www.aps.anl.gov/bcda/synApps/sscan/sscan.html
http://www.aps.anl.gov/bcda/synApps/calc/calc.html
http://cars9.uchicago.edu/software/epics/areaDetector.html

Page 72 of 76

Before moving every module, move it to the corresponding directory

$EPICS_MODULES as indicated above. You will need to have root privileges to

move it there.

C.1.1. Building NDS with areaDetector Support

Define the path to areaDetector and the required modules in the configuration file

epics-nds-2.0/configure/RELEASE. The following line should be added:

AREA_DETECTOR=${EPICS_MODULES}/areaDetector

BUSY=${EPICS_MODULES}/busy

CALC=${EPICS_MODULES}/calc

SSCAN=${EPICS_MODULES}/sscan

Then, the standard NDS build procedure should be followed (mvn package, install

RPMs).

C.1.2. Building NDS application with areaDetector Support

1. Define the path to areaDetector in the configuration file configure/RELEASE.

The following lines should be added:

AREA_DETECTOR=${EPICS_MODULES}/areaDetector

BUSY=${EPICS_MODULES}/busy

CALC=${EPICS_MODULES}/calc

SSCAN=${EPICS_MODULES}/sscan

2. Check a list of required areaDetector’s plugins in Makefile:

<appName>/src/Makefile

3. Uncomment the NDArrayChannel in the project substitution file:

src/<appName>.substitutions

4. Check required plugins configuration and database loading:

iocBoot/ioc<appName>/st.cmd

5. Uncomment AREA_DETECTOR macro definition.

6. Uncomment required plugins (e.g., TIFF).

Page 73 of 76

Appendix D FIRMWARE UPDATE

Some devices allow their firmware to be updated.

To decrease the probability of an inadvertent firmware update, it is necessary to

supply meta-information to every firmware image. The meta-information specifies

what hardware can be updated, and which firmware must be installed.

The meta-information is stored in an XML file whose schema is shown in Figure 15.

Figure 15: Schema of the firmware meta-information file.

For example, the firmware meta-information could look as follows:

<!--

 ! Meta-information file of the firmware. The file is in XML

format.

 !

 ! The root element's image attribute specifies the path to the

firmware

 ! image. The path is relative to the firmware meta-file. If full

URL

 ! is given, http protocol is also supported for retrieval of

images.

 !

 ! Attribute version specifies the version of the firmware image.

 !-->

<firmware image="http://server/ni6529-fw-2.3.1.bin"

 version="2.3.1"

xmlns="http://www.cosylab.com/NDS/FirmwareMetaInfo/2012">

 <!--

 ! device and module refer to the device and its

Page 74 of 76

 ! module(s) for which the firmware is applicable.

 ! For devices with a single module, the module

 ! attribute is optional.

 !-->

 <target device="NI6529" module="fpga-3">

 <!--

 ! Applicable revision(s) of the hardware/electronics.

 ! Empty list implies "all revisions".

 !-->

 <hardware-revision>rev0</hardware-revision>

 <hardware-revision>rev1</hardware-revision>

 <!--

 ! Applicable versions of pre-existing firmware.

 ! Empty list implies "all versions".

 !-->

 <firmware-version>2.2.0</firmware-version>

 <firmware-version>2.2.1</firmware-version>

 <firmware-version>2.2.2</firmware-version>

 </target>

</firmware>

Page 75 of 76

Appendix E TEMPLATE FOR DEVICE-SPECIFIC

DOCUMENTATION

Function Support Level
1
 Comment

 F/P/D/S

1
Support level column has the following meaning: F – full compliance to the Nominal Device Model; P

- partial compliance to the NDM (comment column must have details); D – default Nominal device

Model implementation (e.g.: software simulation); S- device-specific function.

